TUGAS BESAR

  





1. Tujuan[kembali]

     a. Mengetahui pengertian Sensor Gas, Sensor LM35, Sensor PIR, Sensor Rain dan sensor water

     b. Mengetahui Simulasi rangkaian Sensor Gas, Sensor LM35, Sensor PIR, Sensor Rain dan sensor water dengan proteus

     c. Mengetahui Aplikasi Smart Cat House dengan menggunakan Sensor Gas, Sensor LM35, Sensor PIR, Sensor Rain dan sensor water

 2. Alat dan Bahan[kembali]

- Alat 

    1. Power Suply 



   2. Generator DC




3. baterai




- BAHAN

4. Resistor



5. Diode





6.Transistor




7. Inverter NOT( IC 74HC05)



8. Gerbang Logika AND (IC 7408)



9. JK flip-flop (IC 74111)

 



10. Decoder (IC 7448)




11. OP-AMP LM741




12. Logic State





13. Relay




 14 Sensor LM35




15. Sensor PIR


16. sensor water 



17. Gas Sensor


18. Rain Sensor


19. LED



20. 7 Segment Cathoda


21. Motor DC




22. Ground


3. Dasar Teori[kembali]

  • Resistor



Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika.

 
  • Diode

Cara Kerja Dioda:

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

a. tanpa tegangan



Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. 

b. kondisi forward bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif.

c. kondisi reverse bias



Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub.

  • Transistor

Transistor NPN



Pada transistor NPN, semikonduktor tipe-P diapit oleh dua semikonduktor tipe-N. Transistor NPN juga dapat dibentuk dengan menghubungkan anoda dari dua dioda sebagai base dan katoda sebagai kolektor dan emitor. Arus mengalir dari kolektor ke emitor karena potensial kolektor lebih besar daripada base dan emitor.


Transistor PNP



Pada transistor PNP, semikonduktor tipe-N diapit oleh dua semikonduktor tipe-P. Transistor PNP juga dapat dibentuk dengan menghubungkan katoda dari dua dioda sebagai base dan anoda sebagai kolektor dan emitor. Hubungan emitter-base foward bias sementara collector-base reverse bias. Jadi, arus mengalir dari emitor ke kolektor karena potensial emitor lebih besar daripada base dan kolektor.

Transistor sebagai saklar

Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titk jenuh (saturasi). Pada titk jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut-off sehingga tidak ada arus dari kolektor ke emitor. Nilai resistor terhubung ke base (Rb) dapat dihitung dengan;

Rb = Vbe / Ib

Transistor sebagai penguat

Transistor sebagai penguat jika bekerja dalam daerah aktif. Tegangan, arus, dan daya dapat diperkuat dengan beberapa konfigurasi seperti common emitter, common colector, dan common base.

DC Current Gain = Collector Current (Ic) / Base Current (Ib)



  •  Inverter NOT( IC 74HC05)

Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.



Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1

  • Gerbang Logika AND (IC 7408)

Gerbang AND atau disebut juga "AND GATE" adalah jenis gerbang logika yang memiliki dua input (Masukan) dan satu output (keluaran). Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang AND berikut.



Pada gerbang logika AND, simbol yang menandakan operasi gerbang logika AND adalah tanda titik (.) atau bisa juga dengan tanpa tanda titik, contohnya seperti Z = X.Y atau Z = XY.

Perhatikan tabel kebenaran gerbang AND. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang AND akan menghasilkan output (keluaran) logika 1 bila semua variabel input (masukan) bernilai logika 1" sebalikanya "Gerbang AND akan menghasilkan keluaran logika 0 bila salah satu masukannya merupakan logika 0"

Jenis Gerbang Logika AND

Adapun gerbang logika AND terdiri dari gerbang logika AND 2 input dan 3 input. Untuk memperjelas silahkan perhatikan gambar berikut.




Berdasarkan ekspresi Boolean untuk fungsi logika AND didefinisikan sebagai (.) yang mana merupakan operasi bilangan biner, sehingga gerbang AND dapat diturunkan secara bersama-sama untuk membentuk sejumlah input.

Tetapi mengingat bahwa IC gerbang AND yang tersedia dipasaran hanya terdiri dari input 2, 3, atau 4. maka diperlukan input tambahan , sehingga gerbang AND standar perlu diturunkan bersama sehingga mendapatkan nilai input yang diperlukan, sebagai contoh

Gerbang AND Multi Input



Berdasarkan Gerbang AND 6 input diatas maka ekspresi Boolean yaitu :

Q = (A.B).(C.D).(E.F)



  • JK flip-flop (IC 74111)

JK flip-flop sering diaplikasikan sebagai komponen dasar suatu counter atau pencacah naik (up counter) ataupun pencacah turun (down counter). JK flip flop dalam penyebutanya di dunia digital sering di tulis dengan simbol JK -FF. Dalam artikel yang sedikit ini akan diuraikan cara membangun sebuah JK flip-flop menggunakan komponen utama berupa RS flip-flop. Rangkaian Dasar JK Flip-Flop

Gambar Rangkaian Dasar JK Flip-Flop.





Gambar rangkaian diatas memperlihatkan salah satu cara untuk membangun sebuah flip-flop JK, J dan K disebut masukan pengendali karena menentukan apa yang dilakukan oleh flip-flop pada saat suatu pinggiran pulsa positif diberikan. Rangkaian RC mempunyai tetapan waktu yang sangat pendek, hal ini mengubah pulsa lonceng segiempat menjadi impuls sempit. Pada saat J dan K keduanya 0, Q tetap pada nilai terakhirnya. Pada saat J rendah dan K tinggi, gerbang atas tertutup, maka tidak terdapat kemungkinan untuk mengeset flip-flop. Pada saat Q adalah tinggi, gerbang bawah melewatkan pemicu reset segera setelah pinggiran pulsa lonceng positif berikutnya tiba. Hal ini mendorong Q menjadi rendah . Oleh karenanya J = 0 dan K=1 berarti bahwa pinggiran pulsa lonceng positif berikutnya akan mereset flip-flopnya. Pada saat J tinggi dan K rendah, gerbang bawah tertutup dan pada saat J dan K keduanya tinggi, kita dapat mengeset atau mereset flip-flopnya. Untuk lebih jelasnya daat dilihat pada tabel kebenaran JK flip-flop berikut.



  • Logic State

status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

  • Decoder (IC 7448)

Prinsip kerja rangkaian ini adalah untuk menampilkan angka angka desimal kedalam display, dalam aplikasi decoder, ketiga jalur kontrol (LT, RBI, dan RBO) harus diberikan logika high dengan tujuan data input BCD dapat masukan dan penampilan 7 segmen dapat menerima data tampilan sesuai data BCD yang diberikan pada jalur input

Konfigurasi Pin IC Dekoder BCD Ke 7 Segmen 7447 Dan 7448 Jalur input data BCD, pin input ini terdiri dari 4 line input yang mewakili 4 bit data BCD dengan sebutan jalur input A, B, C dan D. Jalur ouput 7 segmen, pin output ini berfungsi untuk mendistribusikan data pengkodean ke penampil 7 segmen. Pin output dekoder BCD ke 7 segmen ini ada 7 pin yang masing-masing diberi nama a, b, c, d, e, f dan g. Jalur LT (Lamp Test) yang berfunsi untuk menyalakan semua led pada penampil 7 segmen, jalur LT akan aktif pad saat diberikan logika LOW pad jalut LT tersebut. Jalur RBI (Riple Blanking Input) yang berfungsi untuk menahan sinyal input (disable input), jalur RBI akan aktif bila diberikan logika LOW. Jalur RBO (Riple blanking Output) yang berfungsi untuk menahan data output ke penampil 7 segmen (disable output), jalur RBO ini akan aktif pada sat diberikan logika LOW.

Read more at: http://elektronika-dasar.web.id/teori-elektronika/dekoder-ttl-bcd-ke-7-segment/
Copyright © Elektronika Dasar
 


  • Sensor PIR

 Sensor PIR terdiri dari beberapa bagian yaitu :

 a. Lensa Fresnel

Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

b. IR Filter

IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

c. Pyroelectric Sensor

Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

d. Amplifier

Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

e. Komparator

Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.



Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR. 

Grafik Respon :

 

Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.


  • Sensor LM35
 
 sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.
 

IC LM 35 ini tidak memerlukan pengkalibrasian atau penyetelan dari luar karena ketelitiannya sampai lebih kurang seperempat derajat celcius pada temperature ruang. Jangka sensor mulai dari – 55°C sampai dengan 150°C, IC LM35 penggunaannya sangat mudah, difungsikan sebagai kontrol dari indicator tampilan catu daya terbelah. IC LM 35 dapat dialiri arus 60 μ A dari supplay sehingga panas yang ditimbulkan sendiri sangat rendah kurang dari 0 ° C di dalam suhu ruangan. Untuk mendeteksi suhu digunakan sebuah sensor suhu LM35 yang dapat dikalibrasikan langsung dalam C (celcius), LM35 ini difungsikan sebagai basic temperature sensor. 
 


  • SENSOR WATER


Water level meter controller yang bisa mendeteksi volume air, tinggi air, serta kualitas air di dalam tangki, sungai, danau, dan sejenisnya dengan akurat dan mudah. Karakteristiknya perangkat ini dipakai pada tangki air guna memberitahu suasana air pada tangki dan bakal secara otomatis mematikan ataumengobarkan pompa air andai keadaan air nyaris penuh atau nyaris habis.Dan juga, dipakai sebagai unsur dari sistem peringatan dini (early warning system) pada sebuah danau, sungai, waduk, dan sebagainya.Bagi mendeteksi arus, ketinggian, dan debit air andai mengalamipenambahan ataupun penurunan yang langsung diantarkan ke operator pemantau guna di analisa dan dilaporkan. 

Berikut adalah spesifikasi dari water level : 
• Arus : < 20mA 
• Tegangan max : 2,5 V (saat sensor terbenam air sepenuhnya) 
• Output type : Analog 
• Ukuran : 120mm x 78mm x 10mm

grafik nya 


  • SENSOR HUJAN

Sensor Hujan FC-37 ini bilamana terkena hujan maka akan meningkatkan resistansinya sehingga tegangan output yang dikeluarkan oleh sensor ini akan semakin kecil bila tingkat intensitas hujan semakin tinggi.

Rain Sensor ini memiliki teori mendasar yang diambil dari Resistive Humadity Sensor, dimana sensor ini tersusun secara paralel dari konduktor-konduktor yang diletakan pada sebuah papan film pada jarak tertentu, dengan kata lain dengan tersusunnya konduktor-konduktor tersebut pada jarak yang telah ditentukan maka seolah-olah kita memberikan resistansi yang besar bagi arus listrik yang mengalir pada konduktor-konduktor tersebut, berdasarkan rumus V = IR, kita dapat memainkan tegangan dengan resistasi yang berubah-ubah tersebut. Bentuk gambar papan film seperti berikut :



Prinsip kerja dari Film board ini
  • Ketika konduktor-konduktor yang tersusun secara paralel tersebut terkena mengenai air, maka arus listrik yang mengalir akan lebih mudah dibandingkan tidak ada air, karena celah-celah yang diberikan kepada konduktor-konduktor tersebut berkurang sehingga resistanis yang awalnya cukup besar menjadi berkurang sesuai dengan kadar air yang tersentuh konduktor-konduktor papan film tersebut
  • Semakin banyak air yang tersentuh oleh konduktor-konduktor papan film tersebut, maka semakin kecil pula resistansinya, sehingga berdasarkan Hukum Khirchoff :

V = I . R
           Tegangan yang dihasilkan semakin kecil, dan begitu sebaliknya.

Grafik Sensor



   Grafik diatas merupakan invers output dari sensor hujan sebelum masuk ke converter digital



        Grafik diatas menunjukkan bahwa Output dari sensor yang telah dikonversikan ke sinyal digital, pada hujan ringan dengan 400cc/menit dan untuk hujan biasa berupa 900cc/menit.


Apabila tingkat intensitas tegangan hujan semakin kecil, maka resistansinya meningkat dan tegangan ouput semakin besar. 


  • SENSOR GAS 

Sensor Asap MQ2 dengan Arduino di gunakan sebagai sensor deteksi Alkohol, H2, LPG, CH4, CO, Asap, dan Propane, Sensor ini sangant cocok di gunakan untuk alat emergensi sebagai deteksi gas-gas, seperti deteksi kebocoran gas, deteksi asap untuk pencegahan kebakaran dan lain lain. sangat penting untuk menghindari kejadian-kejadian yang dapat mengancam nyawa pekerja maupun hewan atau tumbuhan yang berada di sekitar area tersebut, karena beberapa jenis gas bisa sangat membahayakan.

Sensor gas dapat membaca segala jenis gas yang mematikan, seperti gas yang mudah terbakar, gas beracun, gas yang dapat menimbulkan ledakan, dn jika adanya gejala pengurangan oksigen. Sensor ini dapat kita temui di berbagai jenis perusahaan dan tempat, seperti tambang minyak dan sebagainya, alat ini juga mungkin terdapat di stasiun pemadam kebakaran. Biasanya alat ini menggunakan batere untuk beroperasi. Alat ini mengirimkan sinyal peringatan menggunakan suara atau gambaran, seperti sinar lampu flashlight ataupun alarm yang bersuara nyaring saat terdapat konsentrasi gas yang dapat membahayakan bagi area tersebut. Saat alat ini merasakan konsentrasi gas yang membahayakan melebihi level yang telah di atur pada alat tersebut, alarm atau sinyal akan diaktifkan. Pada awalnya, detektor diproduksi untuk mendeteksi hanya satu jenis gas, tetapi alat sensor modern dapat mendeteksi beberapa gas beracun atau mudah terbakar, atau bahkan kombinasi dari kedua jenis.

Sensor gas dapat di golongkan dari cara pengerjaannya (semikonduktor, oksidasi, katalis, infrared, dan lain sebagainya). Ada dua jenis sensor gas, yaitu sensor gas portable dan sensor gas yang terpasang. Jenis sensor yang pertama merupakan alat sensor yang dapat di gunakan selagi berkeliling, yang biasanya di pasang di saku, sabuk atau topi pegawai. Jenis sensor ke dua yaitu alat sensor yang telah terpasang, biasanya alat sensor ini di pasang di dekat ruang control, dan biasanya dapat membaca lebih dari satu jenis gas yang berbahaya

Spesifikasi sensor pada sensor gas MQ-2 adalah sebagai berikut:

  1. Catu daya pemanas : 5V AC/DC
  2. Catu daya rangkaian : 5VDC
  3. Range pengukuran : 200 - 5000ppm untuk LPG, propane 300 - 5000ppm untuk butane 5000 - 20000ppm untuk methane 300 - 5000ppm untuk Hidrogen
  4. Keluaran : analog (perubahan tegangan) 
  5. Berikut konfigurasi dari sensor MQ-S :
  6. Pin 1 merupakan heater internal yang terhubung dengan ground.
  7. Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.
  8. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.
  9. Pin 4 merupakan output yang akan menghasilkan tegangan analog
Grafik nya 


  • OP-AMP LM741

LM741 adalah salah satu IC (Integrated Circuit) Op-Amp (Operational Amplifier) yang memiliki 8 pin. IC Op-Amp ini terdapat 2 jenis bentuk, yaitu tabung (lingkaran) dan kotak (persegi), tetapi yang umum adalah yang berbentuk persegi. Op-Amp banyak digunakan dalam sistem analog komputer, penguat video/gambar, penguat audio, osilator, detector dan lainnya. LM741 biasanya bekerja pada tegangan positif/negatif 12 volt, dibawah itu IC tidak akan bekerja. Setiap pin/kaki-kaki pada IC LM741 mempunya fungsi yang berbeda-beda, keterangan pin/kaki-kaki LM741 dapat dilihat pada gambar dibawah ini.

Op-Amp LM741 dapat membuat beberapa fungsi rangkaian seperti gambar berikut.


 
  • 7 Segment Anoda

Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.



Tabel Pengaktifan Seven Segment Display



  • Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.



Ada besi atau yang disebut dengan nama inti besi dililit oleh sebuah kumparan yang berfungsi sebagai pengendali.  Sehingga kumparan kumparan yang diberikan arus listrik maka akan menghasilkan gaya elektromagnet.  Gaya tersebut selanjutnya akan menarik angker untuk pindah dari biasanya tutup ke buka normal.  Dengan demikian saklar menjadi pada posisi baru yang biasanya terbuka yang dapat menghantarkan arus listrik.  Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normal close.

Fitur:

1. Tegangan pemicu (tegangan kumparan) 5V

2. Arus pemicu 70mA

3. Beban maksimum AC 10A @ 250 / 125V

4. Maksimum baban DC 10A @ 30 / 28V

5. Switching maksimum

  • Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti



Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

  • IC Op-Amp
Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.


Inverting Amplifier 


NonInverting


 
Komparator
 


 
Adder



 
  Rangkaian dasar Op Amp



Op-Amp memiliki beberapa karakteristik, diantaranya:

a. Penguat tegangan tak berhingga (AV = )

b. Impedansi input tak berhingga (rin = )

c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = )

d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)


Bentuk Gelombang :
Rangkaian penguat inverting maupun non-inverting biasanya menggunakan IC Op-Amp 741.

 

  • Penguat Non-inverting (Op Amp)
Rangkaian untuk penguat non-inverting adalah seperti yang ditunjukkan gambar (3).

Gambar 3
Rangkaian Penguat Non-Inverting
Penguat tersebut dinamakan penguat non-inverting karena masukan dari penguat tersebut adalah masukan non-inverting dari Op Amp. Tidak seperti penguat inverting, sinyal keluaran penguat jenis ini sefasa dengan sinyal masukannya. Seperti pada rangkaian penguat inverting syarat ideal sebuah penguat adalah tegangan masukan sama dengan 0 dan impedansi masukan tak terhingga. sehingga dari rangkaian tersebut dapat diperoleh rumus penguat adalah sebagai berikut :       


Substitusi persamaan (5) dan (6) ke persamaan (1) sehingga diperoleh

Rangkaian penguat inverting maupun non-inverting biasanya menggunakan IC Op-Amp 741.

4. Rangkaian Percobaan[kembali]


5. Prinsip Kerja[kembali]

prinsip kerja sensor PIR

apabila pada sensor PIR terdeteksi adanya gerakan dari kucing yang melewati sensor PIR (berlogika 1)
maka tegangan output sebesar 5v terjadi percabangan yang satu ke gerbang AND kemudian ke resistor R3 dan juga terhubung ke decoder pin C. karena logika 1 di PIR pin  C juga berlogika 1 sehingga kaki  C aktif pada decoder tersebut, untuk C nilai nya adalah2 pangkat 2= 4  sehingga output decoder yg aktif adalah qa,qc,qd,qf,qg kemudian masuk ke seven segmen sehingga di seven segmen akan ditampilkan angka 4. pada decoder yang ke 2, pin B dan C aktif, sehingga nilainya 6, sedangkan output yang masuk ke resistor R3 kemudian keluar tegangan sebesar 0,79 sehingga cukup untuk mengaktifkan transistor Q1 sehingga dengan aktifnya transistor Q1 maka arus akan mengalir dari suply terus ke relay terus ke collector terus ke emitter terus ke ground. dengan aktifnya transistor maka switch relay akan bergerak ke kiri sehingga ada suply 12v dari batterai mengalir ke motor sehingga motor dalam keadaan aktif artinya motor akan menggerakkan pintu yang menandakan kucing mendekat

namun apabila sensor PIR berlogika 0 maka motor tidak aktif  yang mana berarti kucing tidak berada pada sekitar sensor.

Prinsip kerja Sensor Gas

apabila sensor gas berlogika 0 maka output diteruskan ke inverter sehingga menghasilkan output berlogika 1 kemudian masuk ke kaki K dari JK FF, kemudian di sisi lain kaki J dari JK FF terhubung dengan gerbang AND yang outputnya berlogika 0 kemudian masuk ke gerbang NOT menjadi berlogika 1 sehingga output dari NOT menjadi input di kaki J pada JK FF sehingga ketika pin J dan K sama-sama berlogika 1 maka kondisi ini disebut kondisi toogle yang mana apabila pada clk diberi sinyal pulsa maka output Q dan Q not akan secara bergantian berlogika dari 0-1 dan dari 1-0 hal ini menandakan penyaring udara aktif karena sensor mendeteksi gas dari kotoran kucing. namun sebaliknya

apabila sensor magnet berlogika 1 maka output masuk ke gerbang NOT sehingga menghasilkan output dengan logika 0 di gerbang NOT. karena pada kaki J berlogika 1 dan kaki K berlogika 0 maka apabila diberi sinyal pulsa pada clk akan menghasilkan output dengan logika 1 pada Q dan logika 0 pada Q NOT sehingga yang aktif hanya salah satu LED yaitu LED blue menandakan sensor tidak mendeteksi gas dari kotoran kucing.

Prinsip Kerja Sensor LM35

Apabila sensor LM35 mendeteksi suhu >=30cm tegangan sebesar 9v menghasilkan output sebesar 0,30volt masuk ke op amp non inverting kemudian dikuatkan sebanyak 10x sehingga menghasilkan output dengan tegangan sebesar 3,02. kemudian tegangan 3,02volt sebagai vinput dari LM741 sehingga tegangan referensi dari lm741 adalah sebesar 3,00 volt sehingga tegangan outputnya adalah +Vsaturasi masuk  melewati resistor R7 menghasilkan tegangan 0,77volt di VBE sehingga transistor aktif, karena transistor aktif maka switch relay akan bergerak ke kiri sehingga terhubung dengan batterai yang bisa menghidupkan motor yang mana pendingin ruangan aktif.

namun apabila sensor LM35 mendeteksi suhu < 30  misalnya di angka 29cm maka tegangan sebesar 5v masuk ke sensor jarak kemudian menghasilkan output sebesar 0,29volt kemudian menjadi input bagi opamp non inverting sehingga terjadi penguatan sebesar 10x sehingga menghasilkan tegangan output sebesar 2,92volt yang mana menjadi Vin di LM741 dengan Vreferensinya adalah 3,01volt sehingga menghasilkan output sebesar -4,02volt kemudian lewat ke R7 menghasilkan tegangan output -4,02 di kaki VBE sehingga transistor Off karena tegangan di VBE tidak cukup, maka relay akan tetap berada dikanan sehingga motor penggerak pendingin udara akan off.

Water Level Sensor 

Water level sensor digunakan untuk mendeteksi air untuk kucing, apakah tersedia dalam jumlahnya atau tidak, saat air menurun maka bagian sensor akan semakin luas yang terendap air. Sensor ini akan mendapat logika satu saat air mencapai batas bawah sehingga mengeluarkan output arus dari kaki out. arus akan diteruskan ke rangkaian OP AMP Detector dimana op amp sebagai detektor akan mendeteksi tegangan output sensor yang dibandingkan dengan tegangan referensi pada kaki inverting, jika lebih besar dari referensi maka ouput op amp adalah +v saturasi dan begitu sebaliknya. Kemudian arus menuju ke resisitor 100 ohm sehingga muncul tegangan menuju rangkaian fix bias transistor sebesar 0.66 volt. tegangan ini akan diteruskan ke kaki base transisitor sehingga transistor aktif dan arus dari power suplay akan mengalir ke kaki colector terus ke emittor dan ke ground. Karena arus mengalir di relay maka switch pada relay akan pindah dari off ke on (kanan ke kiri) sehingga rangkaian pompa air akan mengaktifkan motor yang berfungsi untuk mengisi ulang air pada tabung minum kucing tersebut.

SENSOR HUJAN

 Pada saat test pin berlogika 1, yaitu pada saat mendeteksi adanya air saat hujan, maka pada sensor akan keluar output sebesar 5V. Outputan dari sensor masuk ke kaki non inverting (sebagai input) dari suatu rangkaian non inverting Amplifier. Dimana rumus dari non inverting amplifier adalah vo = (Rf/Ri+1)Vi. Dimana Rf sebesar 20k ohm dan R1 sebesar 10k ohm. Di dapat penguat sebesar 3x sehingga output dari rangkaian op amp nya sebesar 15V. Tegangan 15v di umpankan ke R3 (10k ohm) dan ke transistor di transistor terukur tegangan Vbe  sebesar 0.86V maka transistor akan on. Transistor akan on jika teganganya Vbe nya besar dari 0,60V. Ketika transistor on maka ada arus lewat vcc, relay, lewat kaki kolector, ke emiter trus ke Re trus ke ground. Karena ada harus yang melewati kumparan relay maka swicth dari relay akan bergesar dari ke kanan ke kiri atau akan on. Sehingga terjadi loop yang terhubung dengan baterai led dan motor sehingga ada supply dari batrai yang mengakibatkan indikator led dan motor hidup memanandakan sistem berjalan dan atap kandang kucing otomatis tertutup. 




 7. Download[kembali]





Tidak ada komentar:

Posting Komentar